【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知.
(1)求角C的值;
(2)若c=2,且△ABC的面积为,求a,b.
【答案】(1) (2)a=b=2
【解析】
(1)首先利用降次公式、三角形的内角和定理、两角和的余弦公式化简已知条件,得到,由此求得的值.(2)利用三角形的面积公式和余弦定理列方程组,解方程组可求得的值.
解:(1)2cos2+(cosB-sinB)cosC=1,故cosA+cosBcosC-sinBcosC=0,
则-cos(B+C)+cosBcosC-sinBcosC=0,
展开得:sinBsinC-sinBcosC=0,
∵sinB≠0,即tanC=,∵C∈(0,π),C=.
(2)三角形面积为absin=,故ab=4.
由余弦定理得4=(a+b)2-2ab-ab,所以a+b=4,
故a=b=2.
科目:高中数学 来源: 题型:
【题目】《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行.作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间上,年龄的频率分布及了解《民法总则》的入数如下表:
年龄 | ||||||
频数 | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法总则》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填写下面列联表,并判断是否有的把握认为以45岁为分界点对了解《民法总则》政策有差异;
年龄低于45岁的人数 | 年龄不低于45岁的人数 | 合计 | |
了解 | |||
不了解 | |||
合计 |
(2)若对年龄在,的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为,求随机变量的分布列和数学期望.
参考公式和数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《五曹算经》是我国南北朝时期数学家甄鸾为各级政府的行政人员编撰的一部实用算术书.其第四卷第九题如下:“今有平地聚粟,下周三丈高四尺,问粟几何?”其意思为“场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的体积约为1.62立方尺,圆周率约为3,估算出堆放的稻谷约有( )
A.57.08斜B.171.24斛C.61.73斛D.185.19斛
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四个小球,分别写有“五、校、联、考”四个字,从中任取一个小球,有放回抽取,直到取到“五”“校”二字就停止,用随机模拟的方法估计恰好在第三次停止的概率:利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“五、校、联、考”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下16组随机数,由此可以估计,恰好第三次就停止的概率为______
232 321 230 023 123 021 132 220
231 130 133 231 331 320 120 233
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为,,,假设各盘比赛结果相互独立.
(I)求红队至少两名队员获胜的概率;
(II)用表示红队队员获胜的总盘数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场销售某件商品的经验表明,该商品每日的销量 (单位:千克)与销售价格 (单位:元/千克)满足关系式,其中,为常数.已知销售价格为元/千克时,每日可售出该商品千克.
(1)求实数的值;
(2)若该商品的成本为元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于回归分析的说法中错误的有( )个
(1). 残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.
(2). 回归直线一定过样本中心。
(3). 两个模型中残差平方和越小的模型拟合的效果越好。
(4) .甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com