精英家教网 > 高中数学 > 题目详情
20.若点P是两条异面直线a,b外一点,则过P且与a,b都平行的平面个数是(  )个.
A.0个B.1个C.0或1个D.无数个

分析 利用线面平行的判断定理,可得结论.

解答 解:当过点P与两条异面直线中的一条的平面与另一条直线平行时,此时找不到一个过P的平面与两条异面直线都平行;
当过点P与两条异面直线中的一条的平面与另一条直线不平行时,利用线面平行的判断定理,可得1个平面与a,b都平行.
故选:C.

点评 本题考查线面平行的判断定理,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.
(Ⅰ)若三角形AF1F2的周长为4$\sqrt{3}$+6,求椭圆的标准方程;
(Ⅱ)若|k|>$\frac{\sqrt{2}}{4}$,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=a{x^3}+bx+\frac{c}{x}+4$,满足f(lg2015)=3,则$f(lg\frac{1}{2015})$的值为(  )
A.-3B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.Sn为数列{an}的前n项和,已知an>2,且an2+4n=4Sn+1.
(1)求证:{an}为等差数列;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列an=-n2+3λn(n∈N*)为单调递减数列,则λ的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x∈Z|0<x≤3},则集合A的非空子集个数为(  )个.
A.15B.16C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.cos$\frac{17π}{6}$=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=lg(x2-x-6)的定义域为(  )
A.(-∞,-2)B.(3,+∞)C.(-∞,-2)∪(3,+∞)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合M={y|y=2x},N={y|y=x2+1},则M∩N=(  )
A.MB.NC.D.有限集

查看答案和解析>>

同步练习册答案