精英家教网 > 高中数学 > 题目详情
11.用长8m的铝材,做成一个“H”字形窗框,求:高和宽各为多少时窗户的透亮面积最大?最大面积是多少?

分析 设高为ym,宽为xm,由题意可得x+2y=8,则窗户的透光面积为S=xy,运用基本不等式即可求得最大值及对应的x,y的值.

解答 解:设高为ym,宽为xm,
由题意可得x+2y=8,
则窗户的透光面积为S=xy
=$\frac{1}{2}$x•2y≤$\frac{1}{2}$•($\frac{x+2y}{2}$)2
=$\frac{64}{8}$=8.
当且仅当x=2y,即x=4,y=2取得等号.
则高为2m,宽为4m时,窗户的透亮面积最大,且为8m2

点评 本题考查矩形面积的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=1+$\frac{m}{{e}^{x}+1}$是奇函数,则m的值是-2;值域为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C1:y2=2px(p>0)与直线x-y+1=0相切,椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线C1的焦点F重合,且离心率为$\frac{\sqrt{2}}{2}$,点M(a2,0).
(1)求抛物线C1与椭圆C2的方程;
(2)若在椭圆C2上存在两点A,B使得$\overrightarrow{FA}$=λ$\overrightarrow{FB}$(λ∈[-2,-1]),求|$\overrightarrow{MA}$+$\overrightarrow{MB}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分别写出下列直线的斜率以及它们在x轴、y轴上的截距.
(1)x+2y=4;
(2)y=2(x+3);
(3)y-1=-3(x-2);
(4)$\frac{x}{2}$+$\frac{y}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x+$\frac{a}{x}$+lnx(a∈R),在(1,+∞)上单调递增,则a的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an},a2-1、a3、a7成等比数列,{an}前n项和Sn满足an+12=2Sn+n+4,则(n-6)Sn的最小值为(  )
A.-26B.-27C.-28D.-30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知锐角△ABC的内角A=$\frac{π}{3}$,点0为三角形外接圆的圆心,若$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$,则2x-y的范围为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.求值:①lgx=2,则x=100;
②lg1=0;lg10=1;lg100=2;
③ln1=0;lne=1;ln$\sqrt{e}$=$\frac{1}{2}$;
④3x=5,y=log3$\frac{9}{5}$,则x+y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(2,x)与向量$\overrightarrow{b}$=(4x+2,3)方向相同,则$\overrightarrow{a}$+2$\overrightarrow{b}$=(8,4).

查看答案和解析>>

同步练习册答案