精英家教网 > 高中数学 > 题目详情
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为
2
3
,乙队中3人答对的概率分别为
2
3
2
3
1
2
,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
分析:(1)由题意甲队中每人答对的概率均为
2
3
,故可看作独立重复试验,故ξ~B(3,
2
3
)
Eξ=3×
2
3
=2

(2)AB为“甲、乙两个队总得分之和等于3”和“甲队总得分大于乙队总得分”同时满足,有两种情况:“甲得(2分)乙得(1分)”和“甲得(3分)乙得0分”这两个事件互斥,分别求概率,再取和即可.
解答:解:(Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且P(ξ=0)=
C
0
3
×(1-
2
3
)3=
1
27
P(ξ=1)=
C
1
3
×
2
3
×(1-
2
3
)2=
2
9
P(ξ=2)=
C
2
3
×(
2
3
)2×(1-
2
3
)=
4
9
P(ξ=3)=
C
3
3
×(
2
3
)3=
8
27

所以ξ的分布列为
精英家教网
ξ的数学期望为Eξ=0×
1
27
+1×
2
9
+2×
4
9
+3×
8
27
=2


解法二:根据题设可知,ξ~B(3,
2
3
)

因此ξ的分布列为P(ξ=k)=
C
k
3
×(
2
3
)k×(1-
2
3
)3-k=
C
k
3
×
2k
33
,k=0,1,2,3.
因为ξ~B(3,
2
3
)
,所以Eξ=3×
2
3
=2

(Ⅱ)解法一:用C表示“甲得(2分)乙得(1分)”这一事件,用D表示“甲得(3分)乙得0分”这一事件,所以AB=C∪D,且C,D互斥,又P(C)=
C
2
3
×(
2
3
)2×(1-
2
3
)×[
2
3
×
1
3
×
1
2
+
1
3
×
2
3
×
1
2
+
1
3
×
1
3
×
1
2
]
=
10
34
P(D)=
C
3
3
×(
2
3
)3×(
1
3
×
1
3
×
1
2
)=
4
35

由互斥事件的概率公式得P(AB)=P(C)+P(D)=
10
34
+
4
35
=
34
35
=
34
243

解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,1,2,3.
由于事件A3B0,A2B1为互斥事件,故有P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).
由题设可知,事件A3与B0独立,事件A2与B1独立,因此P(AB)=P(A3B0)+P(A2B1)=P(A3)P(B0)+P(A2)P(B1)=(
2
3
)
3
×(
1
32
×
1
2
)+
C
2
3
×
22
32
×
1
3
(
1
2
×
1
32
+
1
2
×
C
1
2
×
2
32
)=
34
243
点评:本题考查独立重复试验、二项分布、期望、及互斥事件、独立事件的概率问题,同时考查利用概率知识分析问题解决问题的能力.在求解过程中,注意P(AB)=P(A)P(B)只有在A和B独立时才成立.
练习册系列答案
相关习题

科目:高中数学 来源:2013届广东惠阳一中实验学校高二6月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,

答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用表示甲队的总得分.

(1)求的概率及的数学期望

(2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求.

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省温州市八校联考高三(上)入学数学试卷(理科)(解析版) 题型:解答题

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).

查看答案和解析>>

科目:高中数学 来源:2012年江西省鹰潭一中高考数学模拟试卷(文科)(解析版) 题型:解答题

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).

查看答案和解析>>

科目:高中数学 来源:2008年山东省高考数学试卷(理科)(解析版) 题型:解答题

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).

查看答案和解析>>

同步练习册答案