精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为平行于轴的两条直线分别交两点的准线于两点

(1)若在线段的中点证明

(2)若的面积是△的面积的两倍中点的轨迹方程

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)由题设利用斜率公式计算;(2)由三角形面积关系得再由轴不垂直时可得)即检验轴垂直时也成立

试题解析:由题设

记过两点的直线为的方程为

(1)由于在线段

的斜率为的斜率为

(2)设轴的交点为

由题设可得

所以(舍去),

设满足条件的的中点为

轴不垂直时可得).

所以).

轴垂直时重合

所以所求轨迹方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题P;实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+60

(1)若a=1,且为真命题,求实数x的取值范围。

(2)若p是q成立的必要不充分条件,求实数a 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,学校举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确给改选手记正10分,否则记负10分根据以往统计,某参赛选手能答对每一个问题的概率为;现记该选手在回答完个问题后的总得分为

1的概率;

2,求的分布列,并计算数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

(1)求的方程;

(2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下组:第1组,第2组,第3组,第4组,第5组,得到如图所示的频率分布直方图.

(Ⅰ)求a的值;

(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案