精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)求函数的单调区间;

2)若函数有两个零点().

i)求的取值范围;

ii)求证:随着的增大而增大.

【答案】1)见解析;(2)(iii)证明见解析

【解析】

1)求出导函数,分类讨论即可求解;

2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.

1)因为,所以

时,上恒成立,所以上单调递增,

时,的解集为的解集为

所以的单调增区间为的单调减区间为

2)(i)由(1)可知,当时,上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(1由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.

试题解析:1)由正弦定理得

,∴,即

因为,则.

(2)由正弦定理

∴周长

∴当

∴当 周长的最大值为.

型】解答
束】
18

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知平面四边形中,.上,且满足.沿折起,使得平面平面,如图2.

1)若点的中点,证明:平面

2)在(1)的条件下,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.求证:

(1) 直线OG∥平面EFCD;

(2) 直线AC⊥平面ODE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,点为椭圆上任意一点,点关于原点的对称点为点,有,且当的面积最大时为等边三角形.

1)求椭圆的标准方程;

2)与圆相切的直线交椭圆两点,若椭圆上存在点满足,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.

(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;

(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为4.

1)求椭圆C的标准方程.

2)设直线l过点(2,0)且与椭圆C相交于不同的两点AB,直线x轴交于点D,E是直线上异于D的任意一点,当时,直线BE是否恒过x轴上的定点?若过,求出定点坐标,若不过,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的图象在点处的切线方程;

(2)求函数的单调区间;

(3)若,且方程有两个不相等的实数根,求证: .

查看答案和解析>>

同步练习册答案