精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为为参数),交于两点

(1) 求的直角坐标方程和的普通方程;

(2) 若,,成等比数列,求的值.

【答案】(1);(2)

【解析】分析:第一问首先将等式两边同时乘以之后借助于从而将极坐标方程转化为平面直角坐标方程,对于参数方程向普通方程转化,就是消参即可;第二问将直线的参数方程代入抛物线的方程,得到关于t的一元二次方程,借助韦达定理求得两根和与两根积,利用题的条件,,成等比数列以及直线的参数方程中参数的几何意义,得到a所满足的等量关系式,从而求解.

详解:(1)由,两边同乘,得

化为普通方程为

消去参数,得直线的普通方程为

(2)把代入,整理得

,得

,,成等比数列,

的几何意义得,即

,即,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中:

p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;

若p为:x∈R,x2+2x+2≤0,则p为:x∈R,x2+2x+2>0;

若椭圆的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16;

若a<0,-1<b<0,则ab>ab2>a.

所有正确命题的序号为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用二分法求函数的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f1)=–2f1.5)=0.625f1.25≈–0.984f1.375≈–0.260,关于下一步的说法正确的是( )

A. 已经达到精确度的要求,可以取1.4作为近似值

B. 已经达到精确度的要求,可以取1.375作为近似值

C. 没有达到精确度的要求,应该接着计算f1.4375

D. 没有达到精确度的要求,应该接着计算f1.3125

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的六个命题:

①线性回归直线必过样本数据的中心点

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于1;

⑤残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;

⑥甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.

其中真命题的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设N=2n(n∈N* , n≥2),将N个数x1 , x2 , …,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN . 将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前 和后 个位置,得到排列P1=x1x3…xN1x2x4…xN , 将此操作称为C变换,将P1分成两段,每段 个数,并对每段作C变换,得到P2 , 当2≤i≤n﹣2时,将Pi分成2i段,每段 个数,并对每段作C变换,得到Pi+1 , 例如,当N=8时,P2=x1x5x3x7x2x6x4x8 , 此时x7位于P2中的第4个位置.
(1)当N=16时,x7位于P2中的第个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第个位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程
(2)设P(x0 , y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在送医下乡活动中,某医院安排3名男医生和2名女医生到三所乡医院工作,每所医院至少安排一名医生,且女医生不安排在同一乡医院工作,则不同的分 配方法总数为( )
A.78
B.114
C.108
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

组号

分组

频数

频率

第1组

[50,60)

5

0.05

第2组

[60,70)

0.35

第3组

[70,80)

30

第4组

[80,90)

20

0.20

第5组

[90,100]

10

0.10

合计

100

1.00

(Ⅰ)求的值;

(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。

查看答案和解析>>

同步练习册答案