精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求的极大值点;

2)若函数,判断的单调性;

3)若函数有两个极值点,求证:.

【答案】12)见解析(3)见解析

【解析】

1)求导,求出的单调区间后即可得解;

2)由题意得,根据分类讨论的正负,即可得解;

3)由可得,则可得,令,根据的单调性求出的最大值后即可得解.

(1)当时,.时,单调递增,

时,单调递减.所以的极大值点.

2)由已知得

的定义域为.

时,,当时,单调递增,

时,单调递减.

时,由,得.

因而当时,单调递增,当时,单调递减.

时,由,得.

因而当时,单调递增,当时,单调递减.

时,,因而当时,单调递增.

时,由.

因而当时,单调递增,当时,单调递减.

综上所述,当时,上单调递增,在上单调递减;

时,上单调递增,在上单调递减;

时,上单调递增;

时,上单调递增,在上单调递减.

3,则的定义域为. .

有两个极值点,则方程的判别式,且.

,∴.

其中.

.

由于

上单调递增,在上单调递减,

的最大值为.

从而成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,左右两顶点,点为椭圆上任意一点,满足直线的斜率之积为,且的最大值为4.

1)求椭圆的标准方程;

2)已知直线轴的交点为,过点的直线与椭圆相交与两点,连接点并延长,交轨迹于一点.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义上的函数,则下列选项不正确的是(

A.函数的值域为

B.关于的方程个不相等的实数根

C.时,函数的图象与轴围成封闭图形的面积为

D.存在,使得不等式能成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆分别是的上顶点和下顶点.

1)若上位于轴两侧的两点,求证:四边形不可能是矩形;

2)若的左顶点,上一点,线段轴于点,线段轴于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的各项均为整数,满足:,且,其中

1)若,写出所有满足条件的数列

2)求的值;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A02),动点M到点A的距离比动点M到直线y=﹣1的距离大1,动点M的轨迹为曲线C

1)求曲线C的方程;

2Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为DE,求△QDE的面积S的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.

(1)当.

①求数列的通项公式;

②若,求数列的前项的和

(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表

愿意

不愿意

合计

x

5

M

y

z

40

合计

N

25

80

1)写出表中xyzMN的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;

2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.

参考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=bx1),其中a≠0b≠0

1)若ab,讨论Fx)=fx)﹣gx)的单调区间;

2)已知函数fx)的曲线与函数gx)的曲线有两个交点,设两个交点的横坐标分别为x1x2,证明:

查看答案和解析>>

同步练习册答案