精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知AB⊥平面BCE,CD∥AB,△BCE是正三角形,AB=BC=2CD.
(Ⅰ)CF∥平面ADE;
(Ⅱ)求证:平面ADE⊥平面ABE.
分析:(Ⅰ)根据结构特征,建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量的夹角公式求解即可.
(Ⅱ)要证平面ADE⊥平面ABE,只需证明平面ADE内的直线DG,垂直平面ABE即可.
解答:精英家教网解:(Ⅰ)建立如图所示坐标系,设CD=1,则B(0,0,0),D(0,2,1),C(0,2,0),E(
3
,1,0)
BD
=(0,2,1),
CE
 =(
3
,-1,0)

cos< 
BD
, 
CE
>=
5
5

(II)证明:取BE的中点F、AE的中点G,连接FG,GD,CF
∴GF=
1
2
AB,GF∥AB
∵DC=
1
2
AB,CD∥AB
∴CD∥GF CD=GF
∴CFGD是平行四边形
∴CF∥DG
∵CF⊥BF,CF⊥AB
∴CF⊥平面ABE
∴DG⊥平面ABE
∵DG?平面ADE
∴平面ABE⊥平面ADE
点评:本题主要考查异面直线所成的角,平面与平面垂直的判定,同时,还考查了转化思想,运算能力以及空间想象能力,逻辑思维能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点
(Ⅰ) 求证:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD为等边三角形,AD=DE=2AB,F为CD的中点
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F为CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ) 若∠CAD=90°,求三棱锥F-BCE的体积.

查看答案和解析>>

同步练习册答案