精英家教网 > 高中数学 > 题目详情
20.(1)已知x$<\frac{5}{4}$,求函数y=4x-2+$\frac{1}{4x-5}$的最大值.
(2)已知a≤1且a≠0,解关于x的二次不等式ax2-2x-2ax+4>0.

分析 (1)由x<-$\frac{5}{4}$,得5-4x>0,由此利用均值定理能求出函数y=4x-2+$\frac{1}{4x-5}$的最大值.
(2)由已知得(ax-2)(x-2)>0.由此根据a=1,0<a<1,a<0进行分类讨论,能求出关于x的二次不等式ax2-2x-2ax+4>0的解集.

解答 解:(1)∵x<-$\frac{5}{4}$,∴5-4x>0,
∴y=4x-2+$\frac{1}{4x-5}$=-(5-4x+$\frac{1}{5-4x}$)+3≤-2+3=1.
当且仅当5-4x=$\frac{1}{5-4x}$,即x=1时,ymax=1.
(2)∵a≤1且a≠0,ax2-2x-2ax+4>0,
∴(ax-2)(x-2)>0.
当a=1时,解集为{x|x≠2};
当0<a<1时,解集为{x|x>$\frac{2}{a}$或x<2};
当a<0时,解集为{x|$\frac{2}{a}<x<2$}.

点评 本题考查函数的最大值的求法,考查不等式的解集的求法,是中档题,解题时要认真审题,注意分类讨论思想和均值定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+|x-1|.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ) 函数f(x)在[t,t+2](t>0)上的最大值与最小值的差为h(t),求h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.幂函数f(x)的图象过点(4,$\frac{1}{2}$),那么f-1(8)的值是(  )
A.$\frac{1}{64}$B.64C.$\frac{\sqrt{2}}{4}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{b}$=(-$\sqrt{3}$,1),$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=-3,向量$\overrightarrow{a}$为单位向量,则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为4:3两部分,则cosA=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P1(x1,2015)和P2(x2,2015)在二次函数f(x)=ax2+bx+24的图象上,则f(x1+x2)的值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在(0,+∞)上的连续函数y=f(x)满足:xf′(x)-f(x)=xex且f(1)=-3,f(2)=0.则函数y=f(x)(  )
A.有极小值,无极大值B.有极大值,无极小值
C.既有极小值又有极大值D.既无极小值又无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.给定两个命题p,q,其中命题p:对任意实数x都有ax2+ax+1>0恒成立,命题q:a2+8a-20<0,若p∨q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,其长轴与短轴之比为$\frac{\sqrt{6}}{2}$,且点(1,$\frac{2\sqrt{3}}{3}$)在椭圆C上.
(1)求椭圆C的离心率及方程;
(2)已知l1,l2是过点F2且相互垂直的两条直线,l1交椭圆C于M,N两点,l2交椭圆C于P,Q两点,记MN,PQ的中点分别为R,S,探究直线RS是否过某一定点.

查看答案和解析>>

同步练习册答案