【题目】已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足,求数列{bn}的前n项和Sn.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线:(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线:.
(1)求的普通方程和的直角坐标方程;
(2)若曲线与交于,两点,,的中点为,点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据如图给出的2005年至2016年我国人口总量及增长率的统计图,以下结论不正确的是
A. 自2005年以来,我国人口总量呈不断增加趋势
B. 自2005年以来,我国人口增长率维持在上下波动
C. 从2005年后逐年比较,我国人口增长率在2016年增长幅度最大
D. 可以肯定,在2015年以后,我国人口增长率将逐年变大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,如果存在实数使得,那么称为的线性函数.
(1)下面给出两组函数,判断是否分别为的线性函数?并说明理由;
第一组:
第二组::
(2)设,线性函数为.若等式在上有解,求实数的取值范围;
(3)设,取.线性函数图像的最低点为.若对于任意正实数且.试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.
(1)求直线l的直角坐标方程与曲线C的普通方程;
(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆的焦点在x轴上,离心率为,依次连接的四个顶点所得四边形的面积为40.
(1)试求的标准方程;
(2)若曲线M上任意一点到的右焦点的距离与它到直线的距离相等,直线经过的下顶点和右顶点,,直线与曲线M相交于点P、Q(点P在第一象限内,点Q在第四象限内),设的下顶点是B,上顶点是D,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的值域为A,.
(1)当的为偶函数时,求的值;
(2) 当时, 在A上是单调递增函数,求的取值范围;
(3)当时,(其中),若,且函数的图象关于点对称,在处取 得最小值,试探讨应该满足的条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com