精英家教网 > 高中数学 > 题目详情

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

【答案】(1)0.025;(2)见解析;(3)见解析

【解析】

(1)根据直方图数据,有从而可得结果;(2)根据直方图完成列联表,利用公式求得与临界值比较即可得结果;(3)由已知,这批树苗为优质树苗的概率为,且服从二项分布由二项分布的期望公式可得结果.

(1)根据直方图数据,有

解得

(2)根据直方图可知,样本中优质树苗有,列联表如下:

A试验区

B试验区

合计

优质树苗

10

20

30

非优质树苗

60

30

90

合计

70

50

120

可得

所以,没有99.9%的把握认为优质树苗与A,B两个试验区有关系

(3)由已知,这批树苗为优质树苗的概率为,且X服从二项分布B(4,),

所以X的分布列为:

X

0

1

2

3

4

P

故数学期望EX.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设二次函数满足下列条件:当时,的最小值为0,且成立;当时,恒成立.

1)求的解析式;

2)若对,不等式恒成立、求实数的取值范围;

3)求最大的实数,使得存在实数,只要当时,就有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本测量树苗高度(单位:cm),经统计,其高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.其中高度为27 cm及以上的树苗为优质树苗.

(1)求图中a的值

(2)已知所抽取的这120棵树苗来自于A,B两个试验区,部分数据如下列联表:

A试验区

B试验区

合计

优质树苗

20

非优质树苗

60

合计

将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;

(3)用样本估计总体若从这批树苗中随机抽取4棵,其中优质树苗的棵数为X,求X的分布列和数学期望EX

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C(ab0),称圆C1x2y2a2b2为椭圆C伴随圆.已知椭圆C的离心率为,且经过点(01)

1)求实数ab的值;

2)若过点P(0m)(m0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,.

(1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若是数列的前项和,求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有个圆盘,较大的圆盘都在较小的圆盘下面.现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将个圆盘从起始柱移动到目标柱上最少需要移动的次数记为,则____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的定义域为,满足对任意,有,则称型函数;若函数的定义域为,满足对任意恒成立,且对任意,有,则称为对数型函数.

1)当函数时,判断是否为型函数,并说明理由.

2)当函数时,证明:是对数型函数.

3)若函数型函数,且满足对任意,有,问是否为对数型函数?若是,加以证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.

(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;

(下面摘取了第7行到第9行)

(2)抽取的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.

①若在该样本中,数学成绩优秀率是的值:

②在地理成绩及格的学生中,已知,求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:

车间

数量

50

150

100

(1)求这6件样品中来自,,各车间产品的数量;

(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.

查看答案和解析>>

同步练习册答案