精英家教网 > 高中数学 > 题目详情
13.已知数列:{an}满足(2n+1)an=(2n-1)an+1(n∈N*),且a1=1.
(1)求证:数列{an}为等差数列;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$求数列{bn}的前n项和Tn

分析 (1)通过对(2n+1)an=(2n-1)an+1(n∈N*)变形可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n+1}{2n-1}$,进而利用累乘法计算即得结论;
(2)通过(1)裂项可知bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),进而并项相加即得结论.

解答 (1)证明:∵(2n+1)an=(2n-1)an+1(n∈N*),
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n+1}{2n-1}$,
又∵a1=1,
∴an=$\frac{{a}_{n}}{{a}_{1}}$=$\frac{{a}_{2}}{{a}_{1}}$•$\frac{{a}_{3}}{{a}_{2}}$•…•$\frac{{a}_{n}}{{a}_{n-1}}$
=$\frac{3}{1}$•$\frac{5}{3}$•…•$\frac{2n-1}{2n-3}$
=$\frac{2n-1}{1}$
=2n-1,
故数列{an}为等差数列;
(2)解:由(1)可知bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$.

点评 本题考查数列的通项,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则实数a+b=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不用计算器求下列各式的值.
(1)设${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求x+x-1的值;
(2)若xlog34=1,求4x+4-x的值;
(3)[(1-log63)2+log62•log618]÷log64
(4)$\frac{1}{{\sqrt{2}-1}}-{({\frac{3}{5}})^0}+{({\frac{9}{4}})^{-0.5}}+\root{4}{{{{(\sqrt{2}-e)}^4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求$\underset{lim}{x→0}$($\frac{1}{x}$-cotx).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1上在第一象限内的一点,过P作实轴的垂线,垂足为M(10,0),又过M作圆x2+y2=a2的切线,切点为Q,若cos∠MOQ=$\frac{3}{5}$,求双曲线的方程和点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:“关于x,y的方程x2-2ax+y2+2a2-5a+4=0表示圆(a∈R)”,命题q:“?x∈R使得x2+(a-1)x+1<0(a∈R)”
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{1}{2}{x^2}-alnx+\frac{1}{2}(a∈R)$
(1)求函数f(x)单调区间;
(2)若a=-1,求证:当x>1时,f(x)<x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A={y|y=2x+1,x<1},B={x|-1-a≤ax+1≤1+a},若A∪B=B,
(1)求集合A;
(2)求实数a的取值范围.

查看答案和解析>>

同步练习册答案