精英家教网 > 高中数学 > 题目详情

【题目】设函数.

()求函数的单调区间

()若函数有两个极值点求证:

()对于任意总存在使成立求实数的取值范围.

【答案】的递增区间为,递减区间为;(证明见解析;

【解析】试题分析)当时,求导数,分别令,即可求出的单调区间;()根据函数由两个极值点,则是方程的两个不相等的实根,结合韦达定理,可得,构造新函数,求出其单调性,即可得证;()根据题意写出的表达式,求出上的单调性,可得的最大值,列出不等式,构造新函数 分类讨论确定单调性即可求出的取值范围.

试题解析:

的递增区间为递减区间为

函数有两个极值点,则是方程的两个不相等的实根所以 所以

().

()

所以上单调递减. .

上单调递增

上恒成立

上恒成立

上单调递减 不合题意;

1 上单调递减存在不合题意;

2 上单调递增 满足题意

综上实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆C: 的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,

(1)求椭圆C的离心率;
(2)如果|AB|= ,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增的等差数列{an},首项a1=2,Sn为其前n项和,且2S1 , 2S2 , 3S3成等比数列.
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程 所表示的曲线为C,给出下列四个命题:
①若C为椭圆,则1<t<4;
②若C为双曲线,则t>4或t<1;
③曲线C不可能是圆;
④若 ,曲线C为椭圆,且焦点坐标为
⑤若t<1,曲线C为双曲线,且虚半轴长为
其中真命题的序号为 . (把所有正确命题的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是线段EF的中点.

(1)求证:AM∥平面BDE;
(2)求证:AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直,

的中点.

(1)求证: 平面

(2)求证: 平面

(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案