精英家教网 > 高中数学 > 题目详情
(2013•崇明县二模)某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生较多次品,根据经验知道,次品数p(万件)与日产量x(万件)之间满足关系:p=
x2
6
,(1≤x<4)
x+
3
x
-
25
12
,(x≥4)
.已知每生产l万件合格的元件可以盈利20万元,但每产生l万件次品将亏损10万元.(实际利润=合格产品的盈利-生产次品的亏损)
(1)试将该工厂每天生产这种元件所获得的实际利润T(万元) 表示为日产量x(万件)的函数;
(2)当工厂将这种仪器的元件的日产量x(万件) 定为多少时获得的利润最大,最大利润为多少?
分析:(1)根据题目条件写出在x的不同范围内的合格的元件间数,然后由实际利润=合格产品的盈利-生产次品的亏损将生产这种元件所获得的实际利润T(万元) 表示为日产量x(万件)的函数;
(2)分别利用配方法和函数的单调性求函数在连段内的最值,最后取两段的最大之中的最大者.
解答:解:(1)当1≤x<4时,合格的元件数为x-
x2
6
(万件),
利润T=20(x-
x2
6
)-10×
x2
6
=20x-5x2
(万元);
当x≥4时,合格的元件数为x-(x+
3
x
-
25
12
)=
25
12
-
3
x
(万件),
利润T=20(
25
12
-
3
x
)-10(x+
3
x
-
25
12
)=
125
2
-
90
x
-10x
(万元),
综上,该工厂每天生产这种元件所获得的利润为T=
20x-5x2,1≤x<4
125
2
-
90
x
-10x,x≥4

(2)当1≤x<4时,T=20x-5x2=-5(x-2)2+20
∴当x=2(万件)时,利润T的最大值20(万元);
当x≥4时,T=
125
2
-
90
x
-10x=
125
2
-(10x+
90
x
)

y=10x+
90
x
,则y=10-
90
x2
=
10(x+3)(x-3)
x2

当x∈[4,+∞)时,y>0,所以y=10x+
90
x
在[4,+∞)上是单调递增,
所以函数T(x)在[4,+∞)上是减函数,
则当x=4时,利润T的最大值0.      
综上所述,当日产量定为2(万件)时,工厂可获得最大利润20万元.
答:当工厂将这种仪器的元件的日产量x(万件) 定为2(万件)时获得的利润最大,最大利润为20万元.
点评:本题考查了函数模型的选择及应用,考查了配方法及利用导数研究函数的最值,注意分段函数的最值要分段求,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•崇明县二模)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中抽取200件,对其等级系数进行统计分析,得到频率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
则在所抽取的200件日用品中,等级系数X=1的件数为
20
20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,n∈N*,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和数列{bn}的前n项和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)设函数 f(x)=
2x      (x≤0)
log2x (x>0)
,函数y=f[f(x)]-1的零点个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知函数f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,则f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D为斜边AB的中点,则 
AB
CD
=
-1
-1

查看答案和解析>>

同步练习册答案