精英家教网 > 高中数学 > 题目详情

【题目】定义域为R的奇函数f(x)= ,其中h(x)是指数函数,且h(2)=4.
(1)求函数f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

【答案】
(1)解:由于h(x)是指数函数,可设h(x)=ax,a>0,a≠1,

∵h(2)=a2=4,∴a=2,∴函数f(x)= =

∵函数f(x)= 是定义域为R的奇函数,故有f(0)= =0,∴b=1,

∴f(x)=


(2)解:∵f(x)= = ﹣1,在R上单调递减,

故由不等式f(2x﹣1)>f(x+1),可得2x﹣1<x+1,求得x<

即原不等式的解集为{x|x< }


【解析】(1)根据h(2)=4求得指数函数h(x)的解析式,再根据f(0)=0,求得b的值,可得f(x)的解析式.(2)根据f(x)在R上单调递减,可得2x﹣1<x+1,求得x的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:

物体重量(单位g)

1

2

3

4

5

弹簧长度(单位cm)

1.5

3

4

5

6.5

参考公式:
①.样本数据x1 , x2 , …xn的标准差
s= ,其中 为样本的平均数;
②.线性回归方程系数公式 = = =

(1)画出散点图;
(2)利用所给的参考公式,求y对x的回归直线方程;
(3)预测所挂物体重量为8g时的弹簧长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=
(Ⅰ)若点B( ),求cos∠AOC的值;
(Ⅱ)设∠AOB=x(0<x< ),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD//平面MACPA=PD=AB=4

I)求证:MPB的中点;

II)求二面角B-PD-A的大小;

III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中 ①若loga3>logb3,则a>b;
②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数 既是奇函数又是减函数.
其中正确的命题有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图像先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图像. (Ⅰ)若函数g(x)有两个零点x1 , x2 , 且x1<4<x2 , 求实数a的取值范围;
(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有 ,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(m+2)x+(2m+5)(m≠0)的两个零点分别在区间(﹣1,0)和区间(1,2)内,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增等比数列{an}的第三项、第五项、第七项的积为512,且这三项 分别减去1,3,9后成等差数列.
(1)求{an}的首项和公比;
(2)设Sn=a12+a22+…+an2 , 求Sn

查看答案和解析>>

同步练习册答案