精英家教网 > 高中数学 > 题目详情

若函数y=f(x),x∈D同时满足下列条件:
(1)在D内的单调函数;
(2)存在实数m,n,当定义域为[m,n]时,值域为[m,n].则称此函数为D内可等射函数,设数学公式(a>0且a≠1),则当f (x)为可等射函数时,a的取值范围是________.

解:求导函数,可得f′(x)=ax>0,故函数为单调增函数
∵存在实数m,n,当定义域为[m,n]时,值域为[m,n].
∴f(m)=m,f(n)=n
∴m,n是方程的两个根
构建函数g(x)=,则函数g(x)=有两个零点,g′(x)=ax-1
①0<a<1时,函数的单调增区间为(-∞,0),单调减区间为(0,+∞)
∵g(0)>0,∴函数有两个零点,故满足题意;
②a>1时,函数的单调减区间为(-∞,0),单调增区间为(0,+∞)
要使函数有两个零点,则g(0)<0,∴,∴a<2
∴1<a<2
综上可知,a的取值范围是(0,1)∪(1,2)
故答案为:(0,1)∪(1,2).
分析:求导函数,判断函数为单调增函数,根据可等射函数的定义,可得m,n是方程的两个根,构建函数g(x)=,则函数g(x)=有两个零点,分类讨论,即可确定a的取值范围.
点评:本题考查新定义,考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,正确理解新定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[0,2],则函数y=f(x+1)+f(x-1)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x-1)的定义域为(1,2],则函数y=f(
1x
)的定义域为
{x|x≥1}
{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f′(x)>f(x),则f(2012)与e2012f(0)的大小关系为
f(2012)>e2012f(0)
f(2012)>e2012f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f'(x)的图象关于直线x=-
1
2
对称,且f′(1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)若对于任意实数x,
1
6
f′(x)+m>0
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2a-1)x-alnx,g(x)=-
4x
-alnx
(a∈R).
(1)a<0时,求f(x)的极小值;
(2)若函数y=f(x)与y=g(x)的图象在x∈[1,3]上有两个不同的交点M,N,求a的取值范围.

查看答案和解析>>

同步练习册答案