精英家教网 > 高中数学 > 题目详情
11.函数y=x+$\frac{|2x|}{2x}$的图象是图中的(  )
A.B.C.D.

分析 去掉绝对值符号化简函数解析式,判断定义域与单调性得出答案.

解答 解:y=x+$\frac{|2x|}{2x}$=$\left\{\begin{array}{l}{x+1,x>0}\\{x-1,x<0}\end{array}\right.$,
∴函数定义域为{x|x≠0},且在区间(-∞,0)和(0,+∞)上均为增函数,
故选C.

点评 本题考查了分段函数的解析式,函数图象的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.$(tanx+\frac{1}{tanx}){cos^2}x$=(  )
A.tanxB.sinxC.cosxD.$\frac{1}{tanx}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AD⊥DC,AC⊥BD,垂足为E,
(Ⅰ)求证:BD⊥A1C;
(Ⅱ)求二面角A1-BD-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A,B,C不共线,对空间任意一点O,若$\overrightarrow{OP}$=$\frac{1}{2}$$\overrightarrow{OA}$+($\frac{1}{4}$-λ)$\overrightarrow{OB}$+(λ+$\frac{1}{4}$)$\overrightarrow{OC}$成立,则“λ=1”是“P,A,B,C四点共面”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{4}{b}$≥m+c恒成立,则实数m的取值范围为(  )
A.$(-∞,\frac{17}{2}]$B.$(-∞,\frac{13}{2}]$C.$[\frac{13}{2},+∞)$D.$[\frac{17}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-2|.
(1)若对任意的a,b,c∈R(a≠c),不等式$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立,求实数m的最大值;
(2)在(1)的条件下,解不等式f(x)≤2-|x-m|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,过右焦点F的直线l交椭圆于A、B两点,当l与x轴垂直时,AB长为$\frac{{4\sqrt{3}}}{3}$.   
(1)求椭圆的标准方程;
(2)若椭圆上存在一点P,使得$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x2-3x+2<0},B={x|a-1<x<3a+1}.
(1)当a=$\frac{1}{4}$时,求A∩B;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个命题:
①函数y=log2(x2-5x+6)的单调增区间是($\frac{5}{2}$,+∞)
②经过任意两点的直线,都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③命题p:“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”,
其中正确命题的个数有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案