【题目】已知为函数的导函数,且.
(1)判断函数的单调性;
(2)若,讨论函数零点的个数.
【答案】(1) 时, 单调递减, 时, 单调递增(2) 当时, 有一个零点;当和或时, 有两个零点,当且, 由三个零点.
【解析】试题分析:(1)首先明确的表达式,求出在上单调递增,且,从而得到的单调区间;
(2)由,得或,若,即,
转而判断直线与的交点个数即可.
试题解析:
(1)对,求导可得,
所以,与是,所以,
所以,
于是在上单调递增,注意到,
故时, 单调递减, 时, 单调递增.
(2)由(1)可知,
由,得或,
若,则,即,
设
所以在上单调递增,在上单调递减,
分析知时, 时, 时, ,
现考虑特殊情况:
①若直线与相切,
设切点为,则 ,整理得,
设,显然在单调递增,
而,故,此时.
②若直线过点,由,则,则,
结合图形不难得到如下的结论:
当时, 有一个零点;
当和或时, 有两个零点,
当且, 由三个零点.
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数:9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
据此估计,该运动员四次投篮恰有两次命中的概率为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为方便金湖县人民游览三河风景区附近的“网红桥”,现准备在河岸一侧建造一个观景台A,已知射线PM, PN为两边夹角为120°的公路(长度均超过5千米),在两条公路PM,PN上分别设立游客上下点B、C,在观景台A和游客上下点B、C之间和游客上下点B、C之间分别建造三条观光线路AB,AC,BC,测得PB=3干米,PC=5千米.
(1)求线段BC的长度;
(2)若∠BAC= 60°,因政府要计算修建三条观光线路所需费用,所以要计算AB,AC,BC三条线路的总长度的取值范围,请你建立合适的数学模型,帮助政府解决这个问题.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com