【题目】已知A(4, 0),B(2, 2),C (6, 0),记△ABC的外接圆为⊙P.
(1)求⊙P的方程.
(2)对于线段PA上的任意一点G,是否存在以B为圆心的圆,在圆B上总能找到不同的两点E、F,满足=,若存在,求圆B的半径的取值范围;若不存在,说明理由.
【答案】(1);(2)
【解析】试题分析:(1)设⊙P的方程为x2+y2+Dx+Ey+F=0,将A(4, 0),B(2, 2),C (6, 0)代入圆方程,解方程组即可得结果;(2)假设存在圆B: 满足题意, ,又A(4, 0), PA的直线方程是: ,设G(m, n)(),设F(x, y),则中点,根据E、F在圆B上可得,进而可得结果.
试题解析:(1) 解法一:设⊙P的方程为x2+y2+Dx+Ey+F=0.
因为点A,B,C均在所求圆上,所以
解得
故⊙P的方程是.
解法二: A(4, 0),B(2, 2),C (6, 0),
AB的中垂线方程为: ,①
AC的中垂线方程为: ,②
联立①②可得圆心,
半径,
故⊙P的方程是.
(2)假设存在圆B: 满足题意,
,又A(4, 0),
PA的直线方程是: ,
设G(m, n)()
则有, ,
设F(x, y),则中点,
由E、F在圆B上可得:,
即,①
存在E、F即方程组①有解,即圆与圆有公共点,
所以,
把代入可得
故对任意恒成立,
在上单调递减,在单调递增,
, ,
,解得,
又 E为线段GF的中点, E、F在圆B上,
G在圆B外
,即在恒成立
科目:高中数学 来源: 题型:
【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克),如图是测量数据的茎叶图:
规定:当产品中的此种元素含量不小于16毫克时,该产品为优等品.
(1)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望;
(2)从甲厂的10件样品中有放回地逐个随机抽取3件,也从乙厂的10件样品中有放回地逐个随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;
(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.
(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心是坐标原点,焦点在轴上,离心率为,又椭圆上任一点到两焦点的距离和为.过右焦点与轴不垂直的直线交椭圆于,两点.
(1)求椭圆的方程;
(2)在线段上是否存在点,使得?若存在,求出的取值范围;若不存在,请
说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,,).
(1)若的部分图像如图所示,求的解析式;
(2)在(1)的条件下,求最小正实数,使得函数的图象向左平移个单位后所对应的函数是偶函数;
(3)若在上是单调递增函数,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com