精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如表:
x 1 2 3 4 5 6
f(x) 136.13 15.55 -3.92 10.88 -52.48 -232.06
则函数f(x)存在零点的个数为(  )
A、1B、2C、3D、4
分析:根据函数值的符号,利用根的存在性定理进行判断即可.
解答:解:由表格中的数值可知,f(1)>0,f(2)>0,f(3)<0,f(4)>0,f(5)<0,f(6)<0,
∴f(2)f(3)<0,f(3)f(4)<0,f(4)f(5)<0,
∴根据根的存在性定理可知,
在区间(2,3),(3,4)和(4,5)内都存在一个零点,
∴函数f(x)存在零点的个数为3个,
故选:C.
点评:本题主要考查函数零点个数的判断,利用函数值的符号,结合根的存在性定理是解决本题 的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案