精英家教网 > 高中数学 > 题目详情
已知二次函数满足.
(Ⅰ)求的解析式.(Ⅱ)在区间上, 的图象恒在的图象上方 试确定实数的范围.
(Ⅰ)f(x)=x2-x+1. (Ⅱ)m<-1.
 本试题主要是考查了函数的性质和函数的解析式的运用
(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.
∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,
(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1, 1]上恒成立.
设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减.
那么可得。
解: (Ⅰ)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.
∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,所以,∴f(x)=x2-x+1.
(Ⅱ)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1, 1]上恒成立.
设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减.
故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设二次函数,方程的两根满足
(1)求实数的取值范围;
(2)试比较的大小.并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
画出函数的图像,并指出它的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果对任意实数t都有f (3+ t) =" f" (3-t),那么(   )
A.f (3) < f (1) < f (6)B.f (1) < f (3) < f (6)
C.f (3) < f (6) < f (1)D.f (6) < f (3) < f (1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。
(1)求实数的取值范围;
(2)若函数在区间(-1-,1-)上具有单调性,求实数C的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ax2-(2+a)x-3在区间[,1]是单调函数,则a的取值范围是 (  )
A.0<a≤2B.a≤2
C.a≥-2D.a≥2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数的单调递增区间是,则=      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:
①a>0   ②2a+b=0  ③a+b+c>0  ④当﹣1<x<3时,y>0
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,(其中),则实数的取值范围是                

查看答案和解析>>

同步练习册答案