精英家教网 > 高中数学 > 题目详情
(2013•江门一模)如图,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则
AA1
AM
≥1
的概率p=
3
4
3
4
分析:本题是几何概型问题,欲求点M满足
AA1
AM
≥1
的概率,先以A为原点建立空间直角坐标系,由数量积公式得出点M到平面ABCD的距离大于等于
1
2
,点M的轨迹是正方体的
3
4
,求出其体积,再根据几何概型概率公式结合正方体的体积的方法求解即可.
解答:解:本题是几何概型问题,正方体的体积为V=8,
以A为原点建立空间直角坐标系,AB为x轴,AD为y轴,AA1为z轴.
那么A(0,0,0),A1(0,0,2)
设M(x,y,z),那么x,y,z∈[0,2]
AM
=(x,y,z),
AA1
=(0,0,2)
AA1
AM
≥1
,即2z≥1,z
1
2

即点M与平面ABCD的距离大于等于
1
2
,点M的轨迹是正方体的
3
4
,其体积为:V1=
3
4
×8

AA1
AM
≥1
的概率p为:
3
4

故答案为:
3
4
点评:本小题主要考查几何概型、几何概型的应用、几何体的体积等基础知识,考查空间想象能力、化归与转化思想.属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江门一模)已知函数f(x)=
1-x
定义域为M,g(x)=lnx定义域为N,则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)在△ABC中,若∠A=
5
12
π
∠B=
1
4
π
AB=6
2
,则AC=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)在平面直角坐标系Oxy中,直线y=a(a>0)与抛物线y=x2所围成的封闭图形的面积为
8
2
3
,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)广东某企业转型升级生产某款新产品,每天生产的固定成本为10000元,每生产1吨,成本增加240元.已知该产品日产量不超过600吨,销售量f(x)(单位:吨)与产量x(单位:吨)之间的关系为f(x)=
x-
1
1600
x20≤x≤480
7
10
x480<x≤600
,每吨产品售价为400元.
(1)写出该企业日销售利润g(x)(单位:元)与产量x之间的关系式;
(2)求该企业日销售利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)(1)证明:对?x>0,lnx≤x-1;
(2)数列{an},若存在常数M>0,?n∈N*,都有an<M,则称数列{an}有上界.已知bn=1+
1
2
+…+
1
n
,试判断数列{bn}是否有上界.

查看答案和解析>>

同步练习册答案