精英家教网 > 高中数学 > 题目详情
15.若双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的倾斜角是直线l:x-2y+1=0倾斜角的两倍,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{5}{4}$D.$\frac{4}{3}$

分析 由题意,tanα=$\frac{1}{2}$,tan2α=$\frac{1}{1-\frac{1}{4}}$=$\frac{4}{3}$,得出$\frac{b}{a}$=$\frac{4}{3}$,利用e=$\sqrt{1+(\frac{b}{a})^{2}}$得出结论.

解答 解:由题意,tanα=$\frac{1}{2}$,tan2α=$\frac{1}{1-\frac{1}{4}}$=$\frac{4}{3}$,
∴$\frac{b}{a}$=$\frac{4}{3}$,
∴e=$\sqrt{1+(\frac{b}{a})^{2}}$=$\frac{5}{3}$,
故选A.

点评 本题考查双曲线的方程与性质,考查二倍角公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等,现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在锐角△ABC中,BC=1,∠B=2∠A,AC的取值范围为(  )
A.$({1,\sqrt{2}})$B.$(0,\sqrt{2}]$C.$({\sqrt{2},\sqrt{3}})$D.$({1,\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{5}{4}$sinx,x∈R.
(1)求f($\frac{π}{6}$)的值;
(2)若f(α)=1,α∈(0,$\frac{π}{2}$),求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为治疗某种流行疾病,医生让某患者服用一种抗生素,规定每天早上八时服一片,现知该药片每片含药量为128毫克,他的肾脏每天可从体内滤出这种药的50%,问:
(1)经过多少天,该患者所服的第一片药在他体内残留不超过1毫克?
(2)如果抵抗这种疾病要求体内的药物含量不低于25毫克,该患者自服药起的6天内都能抵抗这种疾病,那么该患者应至少连续服药多少天?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正四面体的内切球与外接球的体积之比1:27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在棱长为3的正方体内任取一点P,则点P到正方体各个面的距离都不小于1的概率为$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1的交点,已知AA1=AB=2,∠BAD=60°;
(1)求证:平面A1BC1⊥平面B1BDD1
(2)求点O到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\int_1^2{\frac{{{x^2}+1}}{x}}dx$=$\frac{3}{2}$+ln2.

查看答案和解析>>

同步练习册答案