精英家教网 > 高中数学 > 题目详情
(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(1)求证:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求点B到平面PCD的距离。
(1)同解析(2)二面角D-PC-A的大小的正切值为2。(3)即点B到平面PCD的距离为
解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC
(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1
∴ΔADC为等边三角形,且AC=1,取AC的中点O,则DO⊥AC,又PA⊥底面ABCD,
∴PA⊥DO,∴DO⊥平面PAC,过O作OH⊥PC,垂足为H,连DH
由三垂成定理知DH⊥PC,∴∠DHO为二面角D-PC-A的平面角
由OH=,DO=,∴tan∠DHO==2
∴二面角D-PC-A的大小的正切值为2。
(3)设点B到平面PCD的距离为d,又AB∥平面PCD
∴VA-PCD=VP-ACD,即
 即点B到平面PCD的距离为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图:
在棱长为1的正方体中.
点M是棱的中点,点的中点.
(1)求证:垂直于平面
(2)求平面与平面所成二面角的平面角(锐角)
的余弦值. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知正三棱柱ABCA1B1C1的底面边长是2,DCC1的中点,直线AD与侧面BB1C1C所成的角是45°.
(I)求二面角ABDC的大小;
(II)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知等腰直角三角形,其中∠=90º,.点分别是的中点,现将△沿着边折起到△位置,使,连结
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,△ABC内接于圆O,AB是圆O的直径,
,设AE与平面ABC所成的角为,且,
四边形DCBE为平行四边形,DC平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD平面ADE;
(3)在CD上是否存在一点M,使得MO//平面ADE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为不同的直线,为不同的平面,有如下四个命题:
①若   ②若
③若   ④若
其中正确命题的个数是           (   )   
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱锥中,分别是的中点,,若此正三棱锥的四个顶点都在球O的面上,则球O的体积是(         )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设三棱锥ABCD的顶点A在底面BCD内的射影为O,且OAOBOCOD将此三棱锥分割成三个体积相等的小三棱锥OABCOABDOACD,则O点是△BCD的(   )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列各命题:
①若直线,则不可能与内无数条直线相交。
②若平面内有一条直线和直线不共面,则
③若一个平面内有不共线的三点到另一平面的距离相等,则两平面平行。
④如果两个平面垂直,则一个平面内任意直线都和另一个平面垂直。
其中错误命题的序号是____________.

查看答案和解析>>

同步练习册答案