【题目】春节期间爆发的新型冠状病毒(COVID-19)是新中国成立以来感染人数最多的一次疫情.一个不知道自己已感染但处于潜伏期的甲从疫区回到某市过春节,回到家乡后与朋友乙、丙、丁相聚过,最终乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假设他受甲和受乙感染的概率分别是和.丁是受甲、乙或丙感染的,假设他受甲、乙和丙感染的概率分别是、和.在这种假设之下,乙、丙、丁中直接受甲感染的人数为.
(1)求的分布列和数学期望;
(2)该市在发现在本地出现新冠病毒感染者后,迅速采取应急措施,其中一项措施是各区必须每天及时,上报新增疑似病例人数.区上报的连续天新增疑似病例数据是“总体均值为,中位数”,区上报的连续天新增疑似病例数据是“总体均值为,总体方差为”.设区和区连续天上报新增疑似病例人数分别为和,和分别表示区和区第天上报新增疑似病例人数(和均为非负).记,.
①试比较和的大小;
②求和中较小的那个字母所对应的个数有多少组?
【答案】(1)详见解析(2)①②组
【解析】
(1)记事件“丙受甲感染”,事件“丁受甲感染”,则,,的取值为,,再列出的分布列并求期望.
(2)(i)对于区,根据“总体均值为,总体方差为”,有,再根据是非负整数,得到,从而确定,同理对于区,根据“总体均值为,中位数”,确定.(ii)当时,只有两种组合,一是一个是,五个是或,一个是;二是一个是,一个是或,一个是或,其余是,分别求得组数再求和.
(1)记事件“丙受甲感染”,事件“丁受甲感染”,则,
的取值为
所以的分布列为
1 | 2 | 3 | |
0.32 | 0.56 | 0.12 |
(2)(i)对于区,由知,
,因为是非负整数,
所以,即,所以
当中有一个取,有一个取,其余取时,
对于区,当,,时,满足“总体均值为,中位数”,此时,
所以
(ii)当时,只有两种情况:
①有一个是,有五个是或,有一个是;
②有一个是,有一个是或,有一个是或,其余是.
对于①,共有组
对于②,共有组
故共有组
科目:高中数学 来源: 题型:
【题目】2020年春节期间,全国人民都在抗击“新型冠状病毒肺炎”的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用A、B两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:
所用的时间(单位:小时) | ||||
路线1的频数 | 200 | 400 | 200 | 200 |
路线2的频数 | 100 | 400 | 400 | 100 |
假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.
(1)汽车A和汽车B应如何选择各自的路线.
(2)若路线1、路线2的“一次性费用”分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):
到达时间与约定时间的差x(单位:小时) | |||
该车得分 | 0 | 1 | 2 |
生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车A、B用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的四个顶点围成的菱形的面积为,椭圆的一个焦点为.
(1)求椭圆的方程;
(2)若,为椭圆上的两个动点,直线,的斜率分别为,,当时,的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.
(1)求的值;
(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左右焦点分别为,,离心率为,过的直线与椭圆交于,两点,且周长为8.
(1)求椭圆的标准方程;
(2)是否存在直线,使以为直径的圆经过坐标原点,若存在求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解学生对《3.12植树节》活动节日的相关内容,学校进行了一次10道题的问卷调查,从该校学生中随机抽取50人,统计了每人答对的题数,将统计结果分成,,,,五组,得到如下频率分布直方图.
(1)若答对一题得10分,答错和未答不得分,估计这50名学生成绩的平均分;
(2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)当a=-1时,
①求曲线y= f(x)在点(0,f(0))处的切线方程;
②求函数f(x)的最小值;
(II)求证:当时,曲线与有且只有一个交点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com