精英家教网 > 高中数学 > 题目详情

【题目】春节期间爆发的新型冠状病毒(COVID-19)是新中国成立以来感染人数最多的一次疫情.一个不知道自己已感染但处于潜伏期的甲从疫区回到某市过春节,回到家乡后与朋友乙、丙、丁相聚过,最终乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假设他受甲和受乙感染的概率分别是.丁是受甲、乙或丙感染的,假设他受甲、乙和丙感染的概率分别是.在这种假设之下,乙、丙、丁中直接受甲感染的人数为.

1)求的分布列和数学期望;

2)该市在发现在本地出现新冠病毒感染者后,迅速采取应急措施,其中一项措施是各区必须每天及时,上报新增疑似病例人数.区上报的连续天新增疑似病例数据是“总体均值为,中位数”,区上报的连续天新增疑似病例数据是“总体均值为,总体方差为.区和区连续天上报新增疑似病例人数分别为分别表示区和区第天上报新增疑似病例人数(均为非负)..

①试比较的大小;

②求中较小的那个字母所对应的个数有多少组?

【答案】1)详见解析(2)①

【解析】

1)记事件丙受甲感染,事件丁受甲感染,则的取值为,再列出的分布列并求期望.

2)(i)对于区,根据总体均值为,总体方差为,有,再根据是非负整数,得到,从而确定,同理对于区,根据总体均值为,中位数,确定.ii)当时,只有两种组合,一是一个是,五个是,一个是;二是一个是,一个是,一个是,其余是,分别求得组数再求和.

1)记事件丙受甲感染,事件丁受甲感染,则

的取值为

所以的分布列为

1

2

3

0.32

0.56

0.12

2)(i)对于区,由知,

,因为是非负整数,

所以,即,所以

中有一个取,有一个取,其余取时,

对于区,当时,满足总体均值为,中位数,此时,

所以

ii)当时,只有两种情况:

①有一个是,有五个是,有一个是

②有一个是,有一个是,有一个是,其余是.

对于①,共有

对于②,共有

故共有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年春节期间,全国人民都在抗击新型冠状病毒肺炎的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用AB两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:

所用的时间(单位:小时)

路线1的频数

200

400

200

200

路线2的频数

100

400

400

100

假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.

1)汽车A和汽车B应如何选择各自的路线.

2)若路线1、路线2一次性费用分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):

到达时间与约定时间的差x(单位:小时)

该车得分

0

1

2

生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车AB用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的菱形的面积为,椭圆的一个焦点为.

1)求椭圆的方程;

2)若为椭圆上的两个动点,直线的斜率分别为,当时,的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.

1)求的值;

2)动点在抛物线的准线上,动点上,若点处的切线轴于点,设.求证点在定直线上,并求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为,过的直线与椭圆交于两点,且周长为8.

1)求椭圆的标准方程;

2)是否存在直线,使以为直径的圆经过坐标原点,若存在求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解学生对《3.12植树节》活动节日的相关内容,学校进行了一次10道题的问卷调查,从该校学生中随机抽取50人,统计了每人答对的题数,将统计结果分成五组,得到如下频率分布直方图.

1)若答对一题得10分,答错和未答不得分,估计这50名学生成绩的平均分;

2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.为自然对数的底数)

1)当时,求处的切线方程,并讨论的单调性;

2)当时,,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)a=-1时,

①求曲线y= f(x)在点(0f(0))处的切线方程;

②求函数f(x)的最小值;

(II)求证:时,曲线有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6tA型卡车,6辆载重为10tB型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____

查看答案和解析>>

同步练习册答案