精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=x3+x,x∈R,当0≤θ≤π时,f(mcosθ)+f(sinθ﹣2m)<0恒成立,则实数m的取值范围是

【答案】( ,+∞)
【解析】解:∵f(x)=x3+x,∴f(x)在R上递增且为奇函数,
∴当0≤θ≤π时,f(mcosθ)+f(sinθ﹣2m)<0等价为:
当0≤θ≤π时,f(mcosθ)<﹣f(sinθ﹣2m)=f(2m﹣sinθ),
即mcosθ<2m﹣sinθ,
即m(2﹣cosθ)>sinθ
∵0≤θ≤π,∴2﹣cosθ>0,
则不等式等价为m>
设g(θ)= ,则g′(θ)= =
∵0≤θ≤π,
∴由g′(θ)=0得cosθ= ,即θ=
由g′(θ)>0得cosθ> ,即0<θ<
由g′(θ)<0得cosθ< ,即 <θ<π,
即当θ= 时,g(θ)取得极大值g( )= = =
则m>
所以答案是:( ,+∞)
【考点精析】根据题目的已知条件,利用函数单调性的判断方法和函数的奇偶性的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex1+x﹣2(e为自然对数的底数).g(x)=x2﹣ax﹣a+3.若存在实数x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,角A、B、C的对边分别为a、b、c,若a2=b2+bc,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)当a=1时,求曲线数在点(1, )处的切线方程;

(2)时,函数数的最小值为0,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的导函数的图像与直线平行,且处取得极小值.设

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为的菱形,且,侧面为等边三角形,且与底面垂直, 的中点.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

求函数的单调区间;

时,讨论函数图像的交点个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个样本M的数据是x1 , x2 , …,xn , 它的平均数是5,另一个样本N的数据x12 , x22 , …,xn2它的平均数是34.那么下面的结果一定正确的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆 两点,交此抛物线于 两点,其中 在第一象限, 在第二象限.

(1)求该抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案