精英家教网 > 高中数学 > 题目详情

(本小题满分15分)如图,已知椭圆:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线于点M,N为的中点.

(1)求椭圆的方程;

(2)证明:Q点在以为直径的圆上;

(3)试判断直线QN与圆的位置关系.

 

【答案】

 

(1)

(2)相切

【解析】解:(1)由题设可得,解得,∴.    (2分)

∴椭圆的方程为.                                  (4分)

(2)设,则.∵,∴

.                                     (7分)

点在以为圆心,2为半径的的圆上.即点在以为直径的圆上. (9分)

(3)设,则,且.又

∴直线的方程为.令,得.又的中点,

.∴.            (12分)

.∴.                      (14分)

∴直线与圆相切.                                       (15分)

 

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分15分)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试分别解答以下两小题.

(ⅰ)若不等式对任意的恒成立,求实数的取值范围;

(ⅱ)若是两个不相等的正数,且,求证:

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题

(本小题满分15分).

已知分别为椭圆

上、下焦点,其中也是抛物线的焦点,

在第二象限的交点,且

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点P(1,3)和圆,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:)。求证:点Q总在某定直线上。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题

(本小题满分15分)

如图已知,椭圆的左、右焦点分别为,过的直线与椭圆相交于A、B两点。

(Ⅰ)若,且,求椭圆的离心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题

(本小题满分15分)若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题

(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:

(1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率

 

 

查看答案和解析>>

同步练习册答案