精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥的底面是梯形,且平面中点,

(1)求证:

(2)若,求三棱锥的高.

【答案】(1)证明见解析

(2)

【解析】

1)取的中点,连结,可得为平行四边形,从而得到,根据平面,得到,从而得到.2)设点的中点,连结,证明为正三角形,推出,求出,再证明,从而得到平面,然后得到三棱锥的高.

(1)证明:取的中点,连结,如图所示.

因为点中点,

所以

又因为

所以

所以四边形为平行四边形,

所以

因为平面平面

所以

所以

(2)解:设点的中点,连结,如图所示,

因为

由(1)知,

又因为,所以

所以

所以为正三角形,

所以,且

因为平面

所以平面

因为平面

所以

又因为,所以平面

所以三棱锥的高为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数.(是常数,且()

(Ⅰ)求函数的单调区间

(Ⅱ)处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围

(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量(单位:百件)与销售价格(元/件)近似满足关系式,其中为常数已知销售价格为3元/件时,每日可售出该商品10百件

(1)求函数的解析式;

(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)=|xm|+|x|mN*,存在实数x使fx)<2成立.

1)求不等式fx)>8的解;

2)若αβ≥1fα+fβ)=4,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若在定义域内有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数在点处的切线方程;

(2)存在极小值点与极大值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是____.

①存在点,使得平面平面

②存在点,使得平面

的面积不可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ADEF与梯形ABCD所在的平面互相垂直,的中点.

1)求证:BM∥平面ADEF

2)求证:平面BDE⊥平面BEC

查看答案和解析>>

同步练习册答案