精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足:Sn=1﹣an(n∈N*),其中Sn为数列{an}的前n项和. (Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足: (n∈N*),试求{bn}的前n项和公式Tn

【答案】解:(Ⅰ)∵Sn=1﹣an① ∴Sn+1=1﹣an+1
②﹣①得an+1=﹣an+1+an an
n=1时,a1=1﹣a1a1=

(Ⅱ)因为 bn= =n2n
所以 Tn=1×2+2×22+3×23+…+n×2n
2Tn=1×22+2×23+…+n×2n+1
③﹣④﹣Tn=2+22+23+…+2n﹣n2n+1=
整理得 Tn=(n﹣1)2n+1+2.
【解析】(Ⅰ)先把n=1代入求出a1 , 再利用an+1=Sn+1﹣Sn求解数列的通项公式即可.(Ⅱ)把(Ⅰ)的结论代入,发现其通项为一等差数列乘一等比数列组成的新数列,故直接利用数列求和的错位相减法求和即可.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图三棱台DEF ABCAB=2DEGH分别为ACBC的中点.

(1)求证:平面ABED∥平面FGH

(2)CFBCABBC求证:平面BCD⊥平面EGH.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α为锐角,且 ,函数 ,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)求证:数列{an+1}为等比数列;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求经过点A(-1,-2)且到原点距离为1的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某上市股票在30天内每股的交易价格(元)与时间(天)组成有序对,点落在右方图象中的两条线段上,该股票在30天内(包括30天)的日交易量(万股)与时间(天)的函数关系为:

(1)根据提供的图象,写出该种股票每股的交易价格(元)与时间(天)所满足的函数关系式;

(2)用(万元)表示该股票日交易额,写出关于的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4
(1)求椭圆的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足an2﹣2Sn=2﹣an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

同步练习册答案