精英家教网 > 高中数学 > 题目详情
已知空间三条直线异面,且异面,则(  )
A.异面.B.相交.
C.平行.D.异面、相交、平行均有可能.
D

试题分析:三条直线可从正方体的12条棱里选取满足已知的位置,观察可得异面、相交、平行均有可能
点评:空间想象力的考查
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在四棱锥中,平面,,,
.
(Ⅰ)证明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线所成的角为,求的长.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,分别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点

(1)证明:平面.
(2)证明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,错误的命题是(   )
A.平行于同一直线的两个平面平行。
B.一条直线与两个平行平面中的一个相交,那么这条直线必和另一个平面相交。
C.平行于同一平面的两个平面平行。
D.一条直线与两个平行平面所成的角相等。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥的侧棱长与底面边长都相等,的中点,则所成的角的余弦值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是(  )
A.①③    B.②C.②④D.①②④

查看答案和解析>>

同步练习册答案