精英家教网 > 高中数学 > 题目详情
关于x的方程x2+Bx+C=0的系数B、C分别是一枚骰子先后掷两次出现的点数.
(Ⅰ) 求该方程有实根的概率;
(Ⅱ)求-2是该方程的一个根的概率.
分析:用(B,C)表示将一枚骰子先后掷两次出现的点数(B是第一次出现的点数,C是第二次出现的点数),则将一枚骰子先后掷两次出现的点数的情况共有36种.
(Ⅰ)要使方程x2+Bx+C=0有实数根,当且仅当△=B2-4C≥0,由此能求出该方程有实根的概率.
(Ⅱ)当-2是该方程的根时,有(-2)2+B(-2)+C=0,,即2B=C+4.由此能求出-2是该方程的一个根的概率.
解答:解:用(B,C)表示将一枚骰子先后掷两次出现的点数(B是第一次出现的点数,C是
第二次出现的点数),则将一枚骰子先后掷两次出现的点数的情况共有下列36种:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),
(2,5),(2,6),…,…,…,
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),…(4分)
(Ⅰ)要使方程x2+Bx+C=0有实数根,当且仅当△=B2-4C≥0.…(5分)
在上述36种基本情况中,适合B2-4C≥0的情况有(2,1),(3,1),(3,2),(4,1),
(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),
(6,2),(6,3),(6,4),(6,5),(6,6),…(7分)
共计19种,所以该方程有实根的概率为
19
36
.…(8分)
(Ⅱ)当-2是该方程的根时,有(-2)2+B(-2)+C=0,,即2B=C+4.…(9分)
在上述36种基本情况中,适合2B=C+4的情况只有
(3,2),(4,4),(5,6),…(10分)
p=
3
36
=
1
12
,…(11分)
所以-2是该方程的一个根的概率为
1
12
.…(12分)
(注:用数表等其他形式列出基本事件一样给分)
点评:本题考查列举法求概率的应用,解题时要认真审题,仔细解答,列举时要做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、若关于x的方程x2+b|x|+c=0恰有三个不同的实数解,则b、c的取值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-ax+4=0有实根,命题q:关于x函数y=2x2+ax+4在[3,+∞)上为增函数,若“p或q”为真命题,“p且q”为假命题,则实数a取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若关于x的方程x2+b|x|+c=0恰有三个不同的实数解,则b、c的取值是


  1. A.
    c<0,b=0
  2. B.
    c>0,b=0
  3. C.
    b<0,c=0
  4. D.
    b>0,c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+b|x|+c=0恰有3个不同的实数解,则b、c的范围是

A.c<0,b=0                         B.c>0,b=0

C.b<0,c=0                         D.b>0,c=0

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市同升湖实验学校高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

若关于x的方程x2+b|x|+c=0恰有三个不同的实数解,则b、c的取值是( )
A.c<0,b=0
B.c>0,b=0
C.b<0,c=0
D.b>0,c=0

查看答案和解析>>

同步练习册答案