精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的单调区间;
(2)若函数f(x)的定义域为R,求实数a的取值范围.

【答案】
(1)

解:当a=﹣1时,f(x)=lg(﹣x2﹣x+2),

由﹣x2﹣x+2>0,即x2+x﹣2<0,解得:﹣2<x<1,

所以函数f(x)的定义域为(﹣2,1);

设t(x)=﹣x2﹣x+2,x∈(﹣2,1),

则y=lgt在t∈(0,+∞)为增函数.

由复合函数的单调性,

f(x)的单调区间与t(x)=﹣x2﹣x+2,x∈(﹣2,1)的单调区间一致.

二次函数t(x)=﹣x2﹣x+2,x∈(﹣2,1)的对称轴为

所以t(x)在 单调递增,在 单调递减.

所以f(x)的单调增区间为 ,单调减区间为


(2)

解:当a=0时,f(x)=lg2为常数函数,定义域为R,满足条件.

当a≠0时,f(x)的定义域为R等价于ax2+ax+2>0恒成立.

于是有 ,解得:0<a<8

综上所述,实数a的取值范围是0≤a<8


【解析】(1)将a=﹣1代入f(x),求出f(x)的定义域,结合二次函数的单调性,求出复合函数的单调区间即可;(2))f(x)的定义域为R等价于ax2+ax+2>0恒成立,根据二次函数的性质求出a的范围即可.
【考点精析】关于本题考查的二次函数的性质,需要了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面ABCD是菱 形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点.

(1)求证:PE⊥AD;
(2)若CA=CB,求证:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 2Sn﹣nan=n(n∈N*),若S20=﹣360,则a2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .证明:构造函数f(x)=(x﹣a12+(x﹣a22=2x2﹣2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a22﹣8≤0,所以a1+a2 .根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的四个对应关系,其中构成映射的是( )

A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2

(1)求证:AB⊥BC;
(2)若AC=2 ,求锐二面角A﹣A1C﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,二面角α﹣l﹣β的大小为60°,A∈β,C∈α,且AB、CD都垂直于棱l,分别交棱l于B、D.已知BD=1,AB=2,CD=3,则AC=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将 的图象向左平移 个单位,则所得图象的函数解析式为( )
A.y=sin2x
B.y=cos2x
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长时间用手机上网严重影响着学生的身体健康,某校为了解A、B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;
(Ⅱ)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

查看答案和解析>>

同步练习册答案