精英家教网 > 高中数学 > 题目详情

(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.

(1)化简:

(2)画出函数上的图像;

(3)证明:上是减函数.

 

【答案】

(1)

(2)图像

(3)函数在区间上是减函数.

【解析】

试题分析:(I)由于f(x)为奇函数,所以f(-x)=-f(x),所以可知,因而所求式子的结果为0.

(II)根据奇函数的图像关于原点对称,直接可画出在对称区间[-b,-a]上的图像.

(III)利用函数的单调性的定义及函数的奇偶性进行证明.

第一步:取值,第二步:作差变形,第三步根据差值符号得到结论.

(1)

……

(2)图像……

(3)任取,且          ……

.

又函数上是减函数,所以 .  ……

因为是奇函数,所以,即

故函数在区间上是减函数.              …….

考点:函数单调性定义,函数的奇偶性,函数的图像.

点评:函数的奇偶性一要看定义域是否关于原点对称,二要看f(-x)与f(x)是相等还是互为相反数.奇函数的图像关于原点对称,偶函数的图像关于y轴对称.利用函数的单调性定义证明分三个步骤:一取值,二作差变形,三判断差值符号.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题

(本题满分15分)已知点(0,1),,直线都是圆的切线(点不在轴上).
(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:2013届江苏省扬州市高二下期中数学试卷(解析版) 题型:解答题

(本题满分15分)

已知命题p,命题q. 若“pq”为真命题,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题

(本题满分15分)已知函数

(Ⅰ)若为定义域上的单调函数,求实数m的取值范围;

(Ⅱ)当时,求函数的最大值;

(Ⅲ)当,且时,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题

(本题满分15分)已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,

(1)当直线的斜率为1时,求线段AB的长;

(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分15分)已知直线,曲线

   (1)若且直线与曲线恰有三个公共点时,求实数的取值;

   (2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步练习册答案