精英家教网 > 高中数学 > 题目详情
(本题满分12分)F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线lykx+(b>0)与圆O相切,并与双曲线相交于A、B两点.(Ⅰ)根据条件求出bk满足的关系式;(Ⅱ)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.
(Ⅰ)b2=2(k2+1)  (k¹±1,b>0)  (Ⅱ) yx+ (Ⅲ)[3]
:(Ⅰ)bk满足的关系式为b2=2(k2+1)  (k¹±1,b>0)………3分
(Ⅱ)设A(x1,y1) B(x2,y2),则由消去y得(k2-1)x2+2kbx+b2+1=0,其中k2¹1……4分
∴×=x1x2+y1y2=(1+k2)x1x2+kb(x1+x2)+b2= + + 2(k2+1)
由于向量方向上的投影是pp2=cos2<,>=     …6分
∴(×)×p2= + +2=1Þk=±∵b2=2(k2+1)  (k¹±1,b>0), 故b=,经检验适合D>0
∴直线l的方程为yx+ …………8分
(Ⅲ)类似于(Ⅱ)可得+ +2=mk2="1+" , b2="4+" 根据弦长公式
 …10分
则SDAOB= |AB|×=而mÎ[2,4],∴DAOB的面积的取值范围是[3]  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线上任一点到的距离减去它到轴的距离的差是,求这曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆4x2+y2=1的平行弦的斜率为2,求这组平行弦中点的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,设是椭圆的左焦点,直线为对应的准线,直线 与轴交于点,为椭圆的长轴,已知,且
(1)求椭圆的标准方程;(2)求证:对于任意的割线,恒有
(3)求三角形△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C(p>0)的顶点关于直线l的对称点在该抛物线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设AB是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,AB异于原点),试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)原点O及直线为曲线C的焦点和相应的准线;
(2)被直线垂直平分的直线截曲线C所得的弦长恰好为
若存在,求出曲线C的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(广东地区2008年01月期末试题)已知点的坐标分别是,直线相交于点M,且它们的斜率之积为
(1)求点M轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点之间),试求面积之比的取值范围(为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某圆锥曲线C是椭圆或双曲线,其中心为原点,对称轴为坐标轴,且过,B(,-),则
A.曲线C可以是椭圆也可以是双曲线B.曲线C一定是双曲线
C.曲线C一定是椭圆D.这样的曲线不存在

查看答案和解析>>

同步练习册答案