分析 在f(x)=(-2)x-x+1.分别求出当x的值为1,2,3,4,5,6时的函数值,由此能求出结果.
解答 解:∵函数f(x)=(-2)x-x+1.
∴f(1)=(-2)-1+1=-2,
f(2)=(-2)2-2+1=3,
f(3)=(-2)3-3+1=-10,
f(4)=(-2)4-4+1=13,
f(5)=(-2)5-5+1=-36,
f(6)=(-2)6-6+1=59.
∴当x依次取前6个自然数时,f(x)的函数值列是{-2,3,-10,13,-36,59}.
故答案为:{-2,3,-10,13,-36,59}.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 有最大值$\frac{1}{2}$ | B. | 有最大值$\frac{1}{4}$ | C. | 有最小值$\frac{1}{2}$ | D. | 有最小值$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变 | |
B. | 将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变 | |
C. | 将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变 | |
D. | 将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com