精英家教网 > 高中数学 > 题目详情

【题目】随着我国经济的高速发展,汽车的销量也快速增加,每年因道路交通安全事故造成伤亡人数超过万人,根据国家质量监督检验检疫局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验》(-醉驾车的测试)的规定:饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为,某市交通部门从年饮酒后驾驶机动车辆发生交通事故的驾驶员中随机抽查了人进行统计,得到如下数据:

酒精含量

发生交通事故的人数

已知从这人中任意抽取两人,两人均是醉酒驾车的概率是.

1)求的值;

2)实践证明,驾驶人员血液中的酒精含量与发生交通事故的人数具有线性相关性,试建立关于的线性回归方程;

3)试预测,驾驶人员血液中的酒精含量为多少时,发生交通事故的人数会超过取样人数的

参考数据:

回归直线方程中系数计算公式.

【答案】126 2 3)驾驶人员血液中的酒精含量大于时,发生交通事故的人数会超过取样的..

【解析】

1)用组合数公式分别求出中取人抽取的方法个数,求出两人均是醉酒驾车的概率,得到关于的方程,求解得出的值,再由,求出值;

(2)由已知求出,将已知公式化为,已知数据代入,求出,再代入,即可求出线性回归方程;

3)解不等式,求出的范围,即为所求.

1)记两人均是醉酒驾车为事件

整理得,解得,或(舍去)

,∴

2)由题知:

代入

所以线性回归方程为

3)由解得

故驾驶人员血液中的酒精含量大于时,

发生交通事故的人数会超过取样的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间与极值;

(Ⅱ)若不等式对任意恒成立,求实数的取值范围;

(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )

A. 甲地:总体均值为3,中位数为4

B. 乙地:总体均值为1,总体方差大于0

C. 丙地:总体均值为2,总体方差为3

D. 丁地:中位数为2,众数为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育局卫生健康所对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们身高都处于五个层次,根据抽样结果得到如下统计图表,则从图表中不能得出的信息是( )

A. 样本中男生人数少于女生人数

B. 样本中层次身高人数最多

C. 样本中层次身高的男生多于女生

D. 样本中层次身高的女生有3人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直, ,点在线段上.

() 若点的中点,求证:平面

() 求证:平面平面

() 当平面与平面所成二面角的余弦值为时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线不经过椭圆上顶点,与椭圆交于不同两点.

1)当时,求椭圆的离心率的取值范围;

2)若,直线的斜率之和为,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7).随机抽取50名学生进行调查,将数据分组整理后,列表如下:

则以下四个结论中正确的是( )

A.表中的数值为10

B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108

C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216

D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知位于轴左侧的圆轴相切于点且被轴分成的两段圆弧长之比为,直线与圆相交于两点,且以为直径的圆恰好经过坐标原点.

1)求圆的方程;

2)求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形,.

(1)若,求证:平面

(2)求证:平面平面

(3)若,求与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案