精英家教网 > 高中数学 > 题目详情
16.如图,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作截面PBC1平行的截面,则该截面的面积为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.4

分析 在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作截面PBC1平行的截面,则截面是一个对角线分别为正方体体对角线和面对角线的菱形,进而得到答案.

解答 解:在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,
过点A1作截面PBC1平行的截面,
则截面是一个对角线分别为正方体体对角线和面对角线的菱形,如下图所示:

则EF=2$\sqrt{2}$,A1C=2$\sqrt{3}$,EF⊥A1C,
则截面面积S=$\frac{1}{2}$EF•A1C=2$\sqrt{6}$,
故选:C

点评 本题考查的知识点面面平行性质,四棱柱的结构特征,解答的关键是画出截面,并分析其几何特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,则不等式f(1-x)+f(-x)<0的解集为[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用描述法表示集合:
(1)小于100的自然数组成的集合A={x|x<100,且x∈N};
(2)大于2而小于5的实数组成的集合R={x|2<x<5,x∈R}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求到点A(-5,0)和B(5,0)的距离的平方差为36的动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin($\frac{π}{3}$+ωx)+cos(ωx-$\frac{π}{6}$)(ω>0),f(x)的最小正周期为π.
(1)求ω的值;
(2)求y=f(x)的单调递增区间;
(3)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$],求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在椭圆$\frac{{x}^{2}}{2}$+y2=1中,弦长为2的弦的中点的轨迹方程为10x4y2-8x2y4-3x6-8y4-4x2y2=0(-$\sqrt{2}$<x<$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若圆柱的轴截面是面积为9的正方形,则其底面圆的周长等于3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.三点可确定平面的个数是(  )
A.0B.1C.2D.1个或无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若椭圆的两个焦点与其中一个短轴端点恰好连成等腰直角三角形,则该椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案