精英家教网 > 高中数学 > 题目详情

已知数列 的前项和为,设,且.
(1)证明{}是等比数列;
(2)求.

(1)根据题意 ,结合向量的共线可知,由得:。两式作差来得到求解。
(2)

解析试题分析:解:(1)由得:,两式相减得,故,所以数列是等比数列
(2)由解得,所以,即

考点:等比数列
点评:本试题考查了等比数列的定义以及数列的通项公式与前n项和的关系的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在等差数列中,.
(1)求数列的通项公式;
(2)若数列满足),则是否存在这样的实数使得为等比数列;
(3)数列满足为数列的前n项和,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图象上,其中
(1)证明:数列是等比数列,并求数列的通项公式;
(2)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设正项数列的前项和,且满足.
(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;
(Ⅱ)设是数列的前项和,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,
;当为奇数时,.
(1)若为偶数,且成等差数列,求的值;
(2)设(N),数列的前项和为,求证:
(3)若为正整数,求证:当(N)时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,点在直线上.数列满足,且,前9项和为153.
(1)求数列{的通项公式;
(2)设,数列的前和为,求使不等式对一切都成立的最大正整数的值;
(3)设,问是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线上的点到点的距离的最小值为,若,,
(1)求数列的通项公式;
(2)求证:
(3)是否存在常数,使得对,都有不等式:成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知方程tan2x一tan x+1=0在x[0,n)( nN*)内所有根的和记为an
(1)写出an的表达式;(不要求严格的证明)
(2)记Sn = a1 + a2 +…+ an求Sn
(3)设bn =(kn一5) ,若对任何nN* 都有anbn,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
设数列为单调递增的等差数列,,且依次成等比数列.
(Ⅰ)求数列的通项公式
(Ⅱ)若,求数列的前项和
(Ⅲ)若,求数列的前项和

查看答案和解析>>

同步练习册答案