精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>b>0),直线l:y=x+t交双曲线于A、B两点,△OAB的面积为S(O为原点),则函数S=f(t)的奇偶性为(  )
A、奇函数
B、偶函数
C、不是奇函数也不是偶函数
D、奇偶性与a,b有关
分析:根据f(t)是直线l:y=x+t交双曲线相交后围成的面积,f(-t)是直线y=x-t与双曲线
x2
a2
-
y2
b2
=1相交所得的面积,根据双曲线的对称性质可知f(-t)=f(t)进而判断出函数的奇偶性.
解答:解:f(-t)是直线y=x-t与双曲线
x2
a2
-
y2
b2
=1相交所得的面积,
注意到双曲线的对称性可知:f(-t)=f(t)
所以S=f(t)是偶函数.
故选B
点评:本题主要考查了双曲线的应用.解题的关键是利用了双曲线的对称性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案