精英家教网 > 高中数学 > 题目详情
(2012•珠海二模)已知单位向量
a
b
,其夹角为
π
3
,则|
a
+
b
|
=(  )
分析:根据单位向量的定义与向量数量积公式,结合题意算出
a
b
=
1
2
,再结合向量模的公式加以计算即可得到|
a
+
b
|
的值.
解答:解:∵向量
a
b
是单位向量,∴|
a
|=|
b
|=1
又∵
a
b
的夹角为
π
3

a
b
=|
a
|•|
b
|cos
π
3
=
1
2

因此|
a
+
b
|
=
(
a
+
b
)2
=
a
2
+2
a
b
+
b
2
=
1+2×
1
2
+1
=
3

故选:B
点评:本题给出单位向量的夹角等于
π
3
,求它们的和向量的长度.着重考查了单位向量的概念、平面向量数量积的定义及运算性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•珠海二模)△ABC中,角A、B、C所对的边a、b、c,若a=
3
A=
π
3
cosB=
5
5
,b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)如图1,在边长为4cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于点B,构成一个三棱锥(如图2).
(1)判别MN与平面AEF的位置关系,并给予证明;
(2)证明:平面ABE⊥平面BEF;
(3)求多面体E-AFNM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)(坐标系与参数方程选做题)
曲线ρ=4cosθ关于直线θ=
π4
对称的曲线的极坐标方程为
ρ=4sinθ
ρ=4sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)=
1
3
x3+ax2+bx
(a,b∈R).
(Ⅰ)若曲线C:y=f(x)经过点P(1,2),曲线C在点P处的切线与直线x+2y-14=0垂直,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下,试求函数g(x)=(m2-1)[f(x)-
7
3
x]
(m为实常数,m≠±1)的极大值与极小值之差;
(Ⅲ)若f(x)在区间(1,2)内存在两个不同的极值点,求证:0<a+b<2.

查看答案和解析>>

同步练习册答案