【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北. 湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:
普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 50 | |
个体经营户 | 50 | 150 | |
合计 |
(1)写出选择 5 个国家综合试点地区采用的抽样方法;
(2)补全上述列联表(在答题卡填写),并根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)根据该试点普查小区的情况,为保障第四次经济普查的顺利进行,请你从统计的角度提出一条建议.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为,,,,,).
(1)求选取的市民年龄在内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=.
(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A﹣CFD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用随机模拟的方法可以估计圆周率的值,为此设计如图所示的程序框图,其中表示产生区间上的均匀随机数(实数),若输出的结果为786,则由此可估计的近似值为( )
A. 3.134 B. 3.141 C. 3.144 D. 3.147
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下列命题的否定,并判断所得命题的真假:
(1)二次函数的图像的顶点坐标是;
(2)正数的立方根都是正数;
(3)存在一个最大的内角小于60°的三角形;
(4)对任意实数t,点都在一次函数的图像上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论,其中正确的结论是( )
A.f(x)是偶函数B.f(x)在区间(,)单调递增
C.f(x)在有4个零点D.f(x)的最大值为2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com