精英家教网 > 高中数学 > 题目详情
10.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-2,2],图象如图2所示,方程f[g(x)]=0有m个实数根,方程g[f(x)]=0有n个实数根,则m+n=14

分析 结合函数图象可知,若f(g(x))=0,则g(x)=-1或g(x)=0或g(x)=1;若g(f(x))=0,则f(x)=-1.5或f(x)=1.5或f(x)=0;从而再结合图象求解即可.

解答 解:由图象可知,
若f(g(x))=0,则g(x)=-1或g(x)=0或g(x)=1;
由图2知,g(x)=-1时,x=-1或x=1;
g(x)=0时,x的值有3个;g(x)=1时,x=2或x=-2;
g(x)=-1时,x=1或x=-1.
故m=7;
若g(f(x))=0,则f(x)=-1.5或f(x)=1.5或f(x)=0;
由图1知,f(x)=1.5与f(x)=-1.5各有2个;
f(x)=0时,x=-1,x=1或x=0,故n=7;
故m+n=14;
故答案为14.

点评 本题考查了方程的根与函数的图象的关系应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,bccosA=3.
(Ⅰ)求△ABC的面积;
(Ⅱ)若$b+c=4\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三个函数f(x)=2x+x,g(x)=x-1,h(x)=log3x+x的零点依次为a,b,c,则(  )
A.a<b<cB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2$\sqrt{3}$,离心率e=$\frac{1}{2}$,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1+x2的取值范围是(  )
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若正数a,b满足ab=a+b+3,则ab的取值范围是(  )
A.(3,9]B.[9,+∞)C.[9,27]D.[27,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=cos2x的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=30°,则圆O的面积是(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),b=1,左右两个焦点分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M,N两点,且|MN|=1.
(1)求椭圆C的方程;
(Ⅱ) 设椭圆C的左顶点为A,下顶点为B,动点P满足$\overrightarrow{PA}•\overrightarrow{AB}=m-4$,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案