精英家教网 > 高中数学 > 题目详情
集合M={x|1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是(  )
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(1,+∞)
考点:集合的包含关系判断及应用
专题:集合
分析:由集合M={x|1<x<2},N={x|x<a},M⊆N,由集合包含关系的定义比较两个集合的端点可直接得出结论
解答: 解:∵集合M={x|1<x<2},N={x|x<a},
若M⊆N,
则∴a≥2,
实数a的取值范围是[2,+∞),
故选:A
点评:本题考查集合关系中的参数取值问题解题的关键是根据题设中的条件作出判断,得到参数所满足的不等式,从而得到其取值范围,此类题的求解,可以借助数轴,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将正方体(图1)截去两个三棱锥,得到几何体(图2),则该几何体的正视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex,x<0
lnx,x>0
,则f[f(
1
e
)]=(  )
A、
1
e
B、-e
C、e
D、-
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(π-α)
sin(
π
2
+α)tan(π+α)

(2)已知sinα+cosα=
2
,求sinαcosα及sin4α+cos4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2-2,x≥1
f(x+1),0≤x<1
1
x
,x<0
,若f(a)=
1
4
,则a=(  )
A、
3
2
B、
3
2
或 4
C、±
3
2
或 4
D、
1
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|-1<x<1},B={x|x≤-1或x≥0},则A∩B=(  )
A、{x|-1<x<1}
B、{x|0<x<1}
C、{x|x≥0}
D、{x|0≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

方程|x+y|=
(x-1)2+(y-1)2
所表示的曲线是(  )
A、双曲线B、抛物线
C、椭圆D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2+x,x≥0
-x2+x,x<0
,则不等式f(x2-x+1)<12解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x),且当0≤x1<x2≤1时.f(x1)≤f(x2),求f(
1
2013
)的值.

查看答案和解析>>

同步练习册答案