精英家教网 > 高中数学 > 题目详情

【题目】实数满足不等式函数无极值点

1为假命题,为真命题,求实数的取值范围;

2已知为真命题,并记为,且,若的必要不充分条件,求正整数的值

【答案】12

【解析】

试题分析:,得函数无极值点,恒成立,得,解得.(1为假命题,为真命题,则只有一个命题是真命题,分成假和真两类来求的取值范围2为真命题,两个都是真命题,所以因式分解得,解得的必要不充分条件得,解得,所以

试题解析:

,得,即................1分

函数无极值点,恒成立,得,解得

..................................3分

1∵“为假命题,为真命题,只有一个命题是真命题

为真命题,为假命题,则.....................5分

为真命题,为假命题,则..............6分

于是,实数的取值范围为.....................7分

2∵“为真命题,..............8分

...................10分

,从而

的必要不充分条件,即的充分不必要条件,

,解得..................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的极值;

2,比较与1的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a2=5,S5=40.等比数列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通项公式

(2)令cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列满足为常数),其中为数列的前项和.

(1)若,求证:是等差数列;

(2)若,求数列的通项公式;

(3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形为正方形,点分别为线段上的点,

1求证:平面平面

2求证:当点不与点重合时,平面

3时,求点到直线距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点EF分别是PCBD的中点。

1)求证:EF∥平面PAD

2)求证:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为右顶点为,上顶点为, 成等比数列,椭圆上的点到焦点的最短距离为

1求椭圆的标准方程;

2为直线上任意一点,过的直线交椭圆于点,且,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,截面PQMN是正方形,则下列命题中,正确的为________ (填序号).

ACBD;②AC∥截面PQMN;③ACBD;④异面直线PMBD所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如下图示.

(Ⅰ)求直方图中x的值;

(Ⅱ)求月平均用电量的众数和中位数;

(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

同步练习册答案