精英家教网 > 高中数学 > 题目详情

<,求实数m的取值范围.

m的取值范围是(-∞,-1)∪(,).


解析:

即m<-1时,不等式成立;

    当<m<时,不等式成立;

    当即m∈时,不等式成立;

    当时,不等式不成立.

    综上得能使不等式成立的m的取值范围是(-∞,-1)∪(,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(04年福建卷)(12分)

设函数f(x)=a?b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.

(Ⅰ)若f(x)=1-且x∈[-],求x;

(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(20) (本小题满分12分)

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年辽宁省五校协作体高三上学期期中考试理科数学试卷(解析版) 题型:解答题

定义在上的函数同时满足以下条件:

(0,1)上是减函数,在(1,+∞)上是增函数;

是偶函数;

x0处的切线与直线yx2垂直.

(1)求函数的解析式;

(2)g(x),若存在实数x[1e],使<,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年辽宁省五校协作体高三上学期期中考试文科数学试卷(解析版) 题型:解答题

定义在上的函数同时满足以下条件:

(0,1)上是减函数,在(1,+∞)上是增函数;

是偶函数;

x0处的切线与直线yx2垂直.

(1)求函数的解析式;

(2)g(x),若存在实数x[1e],使<,求实数m的取值范围..

 

查看答案和解析>>

同步练习册答案