精英家教网 > 高中数学 > 题目详情
20.集合A={x|x2-3x+2=0,x∈R},集合B={x|2x2-ax+2=0,x∈R},若A∪B=A,求实数a的范围.

分析 确定集合A的元素,利用B⊆A,确定a的取值.

解答 解:因为A∪B=A,所以B⊆A,
因为A={x|x2-3x+2=0}={1,2},所以要使B⊆A,则有
①若B=∅,则△=a2-16<0,解得-4<a<4.
②若B≠∅,则B={1}或B={2}或B={1,2}.
若B={1},$\left\{\begin{array}{l}{1+1=\frac{a}{2}}\\{1×1=1}\end{array}\right.$即a=4
若B={2},$\left\{\begin{array}{l}{2+2=\frac{a}{2}}\\{2×2=1}\end{array}\right.$.无解舍去
若B={1,2},$\left\{\begin{array}{l}{1+2=\frac{a}{2}}\\{1×2=1}\end{array}\right.$无解舍去
综上:a的取值范围是-4<a≤4.

点评 本题主要考查利用集合之间的关系确定参数的取值范围,要注意分类讨论.属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是$\frac{2}{3}$,求:
(1)油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知非零实数x,y,若x2+xy-6y2=0,求$\frac{x+y}{x-y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:x+y-2=0,直线l2过点(0,5),记l1,l2的夹角为θ,若sinθ=$\frac{2\sqrt{5}}{5}$,则l1,l2的交点坐标为(  )
A.(-$\frac{3}{4}$,$\frac{11}{4}$)或(-$\frac{9}{4}$,$\frac{17}{4}$)B.(-$\frac{3}{4}$,$\frac{11}{4}$)或($\frac{9}{4}$,-$\frac{1}{4}$)
C.($\frac{3}{4}$,$\frac{5}{4}$)或(-$\frac{9}{4}$,$\frac{17}{4}$)D.($\frac{3}{4}$,$\frac{5}{4}$)或($\frac{9}{4}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知扇形的周长为4cm,当它的半径为1cm和圆心角为2弧度时,扇形的面积最大,这个最大面积是1cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程组$\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=5}\\{xy=\frac{1}{6}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果a2+b2=$\frac{1}{2}$c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是(  )
A.相交B.相切C.相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-1=0},B={x|x2-2ax+b=0},A∪B=A,求a,b的值域或a,b所满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:a2<a(a∈R),命题q:对任意x∈R,都有x2+4ax+1≥0(a∈R)
(1)若命题p且q为假,p或q为真,求实数a的取值范围;
(2)若命题p,q为真时,实数a的取值集合分别为集合M和集合N,则“x∈M或x∈N”是“x∈(M∩N)”的什么条件?并说明理由(提示:充分不必要条件,必要不充分条件,充要条件,既不充分又不必要条件)

查看答案和解析>>

同步练习册答案