【题目】某公司近年来特别注重创新产品的研发,为了研究年研发经费(单位:万元)对年创新产品销售额(单位:十万元)的影响,对近10年的研发经费与年创新产品销售额(,10)的数据作了初步处理,得到如图的散点图及一些统计量的值.
其中,,,,.
现拟定关于的回归方程为.
(1)求,的值(结果精确到0.1);
(2)根据拟定的回归方程,预测当研发经费为13万元时,年创新产品销售额是多少?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行了分析研究,分别记录了2016年12月1日至12月5日每天的昼夜温差以及实验室100颗种子中的发芽数,得到的数据如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取两组,用剩下的三组数据求线性回归方程,再对被选取的两组数据进行检验.
(1)求选取的两组数据恰好是不相邻的两天数据的概率.
(2)若选取的是12月1日和12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程.
(3)由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的,据此说明(2)中所得线性回归方程是否可靠?并估计当温差为9 ℃时,100颗种子中的发芽数.
附:回归方程中斜率和截距的最小二乘法估计公式分别为: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在中,,,,、分别是、上的点,且,将沿折起到的位置,使,如图2.
(Ⅰ)求证:平面;
(Ⅱ)当长为多少时,异面直线,所成的角最小,并求出此时所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照,,,,分成5组,制成了如图所示的频率分布直方图.
(1)求图中a的值;
(2)设该市有10万个家庭,估计全市月均用水量不低于的家庭数;
(3)假设同组中的每个数据都用该组区间的中点值代替,估计全市家庭月均用水量的平均数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com