精英家教网 > 高中数学 > 题目详情

【题目】已知函数 的部分图象如图所示,则下列结论错误的是(
A.
B.函数f(x)在 上单调递增
C.函数f(x)的一条对称轴是
D.为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移 个单位

【答案】D
【解析】解:由题意, = ,∴ω=1, ( ,2)代入f(x)=2sin(x+φ),可得φ=﹣
∴f(x)=2sin(x﹣ ),
∴A正确,
由于函数单调递增,2kπ﹣ ≤x﹣ ≤2kπ+ ,可得函数f(x)在 上单调递增,B正确;
x= 时,f(x)=2,即函数f(x)的一条对称轴是 ,C正确;
f(x)=2cos(x﹣ ),为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移 个单位,D不正确.
故选D.
【考点精析】认真审题,首先需要了解函数y=Asin(ωx+φ)的图象变换(图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足对任意的都有,且

(1)求数列的通项公式;

(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,其离心率为.

(1)求椭圆的方程;

(2)直线相交于两点,在轴上是否存在点,使为正三角形,若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边, = ,且a+c=2.
(1)求角B;
(2)求边长b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,则函数f(x)=x⊙ 的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足Sn=2n﹣an(n∈N*). (Ⅰ)计算a1 , a2 , a3 , a4 , 并由此猜想通项公式an
(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是 . (填写所有正确的序号) ①若sinx+siny= ,则siny﹣cos2x的最大值为
②函数y=sin(2x+ )的单调增区间是[kπ﹣ ,kπ+ ],k∈Z;
③函数f(x)= 是奇函数;
④函数y=tan 的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数, ).

(1)设的导函数,证明:当时, 的最小值小于0;

(2)若恒成立,求符合条件的最小整数

查看答案和解析>>

同步练习册答案