精英家教网 > 高中数学 > 题目详情

【题目】D为△ABC的BC边上一点, ,过D点的直线分别交直线AB、AC于E、F,若 ,其中λ>0,μ>0,则 + =

【答案】3
【解析】解:如图所示,
= + = +
=(1﹣λ)
又E,D,F三点共线,
∴存在实数k,使 =k =k( )=kμ ﹣kλ
=﹣2
= =
∴(1﹣λ) =(kμ ﹣kλ )﹣( ),
即(1﹣λ) =(kμ﹣ +( ﹣kλ)

解得μ= ,λ=
+ =3(1﹣k)+3k=3.
所以答案是:3.
所以答案是:3.

【考点精析】根据题目的已知条件,利用平面向量的基本定理及其意义的相关知识可以得到问题的答案,需要掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,ADE是⊙O的割线,AC=AB,连接CD,CE,分别与⊙O交于点F,点G.

(1)求证:△ADC~△ACE;
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列的前三项和为6,且成等比数列

1)求数列的通项公式;

2)设,数列的前项和为,求使的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线l1mx+8yn=0和l2:2xmy-1=0.试确定mn的值,使

(1)l1l2相交于点P(m,-1);则m____n_______

(2)l1l2.则_________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,关于x的方程[f(x)]2+mf(x)﹣1=0有三个不同的实数解,则实数m的取值范围是(
A.(﹣∞,e﹣
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极大值.

(1)求实数的值;

(2)若关于的方程有三个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的参数方程为为参数),若是圆轴正半轴的交点,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,设过点的圆的切线为.

(1)求直线的极坐标方程;

(2)求圆上到直线的距离最大的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点M(3,2)到拋物线C:y=ax2(a>0)准线的距离为4,F为拋物线的焦点,点N(l,l),当点P在直线l:x﹣y=2上运动时, 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案